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In this paper, the control problem of microgrids (MGs)operating in islanded mode is approached
from a passivity-based control perspective. A control scheme is proposed that, relying only on local
measurements for the power converters included in the network representation, achieves both voltage
regulation and power balance in the network through the generation of grid-forming and grid-following
nodes. From the mathematical perspective, the importance of the contribution lies in the feature that,
exploiting a port-controlled Hamiltonian representation of the MG, the closed-loop system’s stability
properties are formally proved using arguments from the theory of non-linear dynamical systems.
Fundamental for this achievement is the decomposition of the system into subsystems that require a
control law and another whose variables can evolve in a free way. From the practical viewpoint, the
advantage of the proposed controller lies in the feature that the power demanded by the loads is satisfied
without neither computing its specific value nor solving the non-linear algebraic equations given by the
power flow, avoiding the computational burden associated with this task. The usefulness of the scheme is
illustrated via a numerical simulation that includes practical considerations.
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1. Introduction

A microgrid (MG) is an electrical network that interconnects loads with distributed energy resources
(DERs), the latter mainly given by renewable energy sources like photovoltaic (PV), eolic and battery
among others. The mixed nature of DERs imposes the necessity of including power converters to
homogenize the generated electrical energy and make it compatible with the load requirements. MGs
can operate connected to the main grid, in grid-connected mode, or in autonomous operation, in islanded
mode. Regardless of the operation mode, their objective is to satisfy the power demanded by the loads
ensuring, at the same time, that the bus voltages remain within allowed values (Gu et al., 2014; Han
et al., 2015; Shuai et al., 2016; Bidram et al., 2017; Rojas & Rousan, 2017).
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PASSIVITY-BASED CONTROL FOR ISLANDED MICROGRIDS 1573

Due to the structure described above, MGs’ control problem imposes additional challenges
concerning the usually found in conventional power systems. One that is fundamental is related to the
absence of rotating masses, a condition that drastically increases the system sensitive to the appearance
of sudden and fast changes in the operating conditions (Gu et al., 2014; Arani et al., 2017; Tuffner
et al., 2018). This situation generates a two-fold complication: the necessity of including local (primary)
high-performance controllers for the power converters to achieve the operation objective (Bouzid et al.,
2015; Han et al., 2015) and the imperative requirement of including the influence of these electronic
devices in the dynamic analysis of the whole network (Pogaku et al., 2007).

The complexity involved in both the controller design and the dynamic analysis problems for MGs
lies in the fact that the models for these systems are given by a set of non-linear differential equations
subject to a set of non-linear algebraic equations. The former due to the topological structure of the non-
linear electrical circuits used to represent the power converters and loads connected to the network, while
the latter coming from the mathematical representation of the power exchanged among the different
elements that participate in the network (the well-known load flow equations).

In order to deal with the problematics described above, the usual approach to design control schemes
is to consider a hierarchical structure. The basic level is dedicated to guarantee a stable power converters
operation, in the sense that voltages and currents exhibit a bounded behaviour, to later on consider a
second control level whose purpose is to determine the specific value for the variables associated to
the converters that correspond to a prescribed power balance. This two-step design is endowed with
additional desired features like the avoidance of requiring information of the whole network for a local
controller operation and, especially in the islanded operation mode, that some converters generate a
voltage reference (grid-forming operation) while others provide a fixed amount of power (grid-following
operation).

Diverse solutions to the control problem above can be found in the literature standing out the use
of model-free algorithms, mostly PI-based structures, for the power converters operation. Despite the
widely recognized advantages of these schemes, their main drawback lies in the lack of a formal
analysis of their stability properties, leading to a time-consuming tuning and the eventual generation
of instabilities (Bouzid et al., 2015). Some efforts have been reported to deal with these problems
like the (decentralized) model predictive control, but besides the high order required for the control
scheme, the stability analysis problem is not completely solved since the design is based on a linearized
representation of the system (Jayachandran & Ravi, 2019). On the other hand, two main approaches can
be identified to deal with the power balance objective. The first corresponds to the numerical solution of
the load flow equations, while the second corresponds to the proposition of what are known as droop-
based (also model-free) schemes. Although the numerical alternative is well dominated, its disadvantage
lies in the computational burden and its offline nature (Agundis-Tinajero et al., 2019). Concerning the
study of droop-based strategies, the stability analysis of these kinds of schemes has been solved to
a very large extent including a Hamiltonian approach (Schiffer et al., 2014), the interpretation of the
system operation from a multiagent perspective (Simpson-Porco et al., 2013), the inclusion of economic
constraints (Stegink et al., 2016) and the use of input-to-state stability arguments (Konstantopoulos
et al., 2015). However, all these results consider only the dynamic behaviour of power variables
disregarding the power converters’ presence and its associated phenomena without approaching the
dynamic analysis of the whole network.

In this paper, a solution to the control problem of MGs is presented exhibiting two main features:
a complete dynamical model for the network is considered, including the influence of detailed non-
linear models for the power converters, and the stability properties induced by the proposed controller
are formally proved without disregarding any element of the whole network. Besides, the contribution
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1574 S. AVILA-BECERRIL ET AL.

enjoys the properties that its implementation relies only on the measurement of local variables,
guarantees the generation of both grid-forming and grid-following nodes and the power network balance
is achieved without the specific computation of the power demanded by the loads, avoiding the use of
neither numerical methods nor droop-based schemes.

The key characteristic of the contribution design methodology is the representation of all the
elements that compose an MG (voltage-fed and current-fed converters, the network topology and the
loads) in terms of the interconnection of port-controlled Hamiltonian (PCH) systems (van der Schaft &
Maschke, 2013), since under this context,

• a passivity-based controller (PBC) for each one of the DERs was designed to ensure the convergence
of their voltage and current to bounded prescribed values and

• the system could be decomposed into subsystems that required a control law to reach a proper
behaviour and a subsystem whose variables can evolve in a free way as long as they describe
a bounded behaviour. This decomposition facilitated, complementing the PBC design, the use of
cascaded systems theory to develop the network stability analysis.

The last feature of the proposed controller scheme concerns the way how the power balance objective
was approached. In this sense, exploiting the identified decomposition of the system, it was proved that
ensuring the grid-following nodes generate the maximum amount of available power and assuming that
the grid-forming nodes are able to complement the demand of the loads, the behaviour of network
variables naturally converge to the required power balance, i.e., it is not required to compute the loads’
power demand explicitly.

The results presented in this contribution follows the ideas developed in Avila-Becerril et al. (2019)
and Avila-Becerril & Espinosa-Pérez (2020) where different approaches have been proposed to solve
the MG control problem. In particular, it is an extended and improved version of Avila-Becerril et al.
(2018) in the sense that for both voltage-fed and current-fed converters, it is possible to impose active
and reactive power profiles; besides, the stability properties of the whole closed-loop system are proved
in a clear, complete and formal way by exploiting cascaded systems theory. On the other hand, the
necessity to assume that the loads satisfy a passivity property is still present in the current state of the
research work.

The rest of the paper is organized as follows. In Section 2, the model of the MG is presented.
Section 3 introduces the controller used to stabilize the network, while the procedure to satisfy the power
demanded by the loads is presented in Section 4. Some numerical results are presented in Section 5,
while in Section 6 some concluding remarks are included.

2. Hamiltonian MG model

In this section, the model of a generic single-phase MG is presented. The model is built up by a proper
interconnection of individual PCH models that represent the electrical network and the power converters,
leading to a single PCH representation for the complete MG.

2.1. Electrical network model

The core of the MG is an electrical network that is composed by power lines that interconnect sources
and loads ports. There exist three kinds of buses: grid-forming, grid-following and loads. In particular,
it is assumed that there are n1 grid-forming nodes (associated to voltage-fed converters), n2 loads, n3
lines and n4 grid-following nodes (associated to current-fed converters).
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PASSIVITY-BASED CONTROL FOR ISLANDED MICROGRIDS 1575

In order to develop the model, it is assumed that

A.1 each power line is modelled by a series R − L linear circuit,

A.2 each load and each grid-following bus has a shunt linear capacitor parallel-connected.

The dynamical variables associated with the electrical network are represented by the vector of the
capacitor voltages

x3 = [
x3zx3s

] ∈ R
(n2+n4), (2.1)

and the vector of inductor currents x4 ∈ Rn3 . The voltage vector partition (2.1) is necessary to distinguish
between the voltages at the grid-following buses x3s and the voltages at loads’ ports x3z.

Considering A.1 and A.2, the network composed by the interconnecting lines can be represented by
an electrical circuit whose dynamics can be obtained following ideas from Graph theory (see Bollobás,
1998, and the application to MGs reported in Avila-Becerril et al., 2016). To this end, assume that the
electrical circuit has two kinds of input ports whose corresponding variables are given by the pair of
currents and voltages f1, e1 ∈ Rn1 and f2, e2 ∈ Rn4 . As will be explained below, these ports are used to
interconnect the network with the voltage-fed and current-fed converters.

On the other hand, the electrical circuit total stored energy W34 : R(n2+n4)×Rn3 → R�0 is given by

W(x3, x4) = 1

2
xT

3 Cx3 + 1

2
xT

4 Lx4, (2.2)

where C = diag{Cz, Cs} = CT > 0 and L = LT > 0 are the capacitances and inductances matrices,
respectively. Concerning the dissipative elements, the constitutive relationships between the currents
iR ∈ Rn3 and voltages vR ∈ Rn3 for the resistances in series with the line inductors, under A.1, are

iR = x4 = R−1
4 vR, (2.3)

with R4 = diag{R4i} ∈ Rn3×n3 , R4i > 0, the resistance matrix, while the behaviour of the loads’ currents
iz ∈ Rn2 in terms of their corresponding voltages vz ∈ Rn2 is characterized by

iz = ψ−1
c (vz) = ψ−1

c (x3z), (2.4)

where ψc(·) is a bijective (possibly non-linear) vector function and the last identity is obtained by taking
into account A.2. Under the conditions introduced above, the dynamical model of the network can be
written as a PCH system given by

P34ẋ34 = [
J34 − R34

]
x34 − ψ34(x3z) + G34Es, (2.5)
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1576 S. AVILA-BECERRIL ET AL.

where x34 = [
xT

3 xT
4

]T ∈ R(n2+n4+n3), R34 = diag{R−1
3 , R4}, R3 := diag{R3i} ∈(n2+n4)×(n2+n4) model

the capacitors’ losses and the matrices

J34 =
[

0 −HCL
HT

CL 0

]
= −J

T
34, G34 =

[
0 −HC2

HT
1L 0

]
,

P34 =
[

C 0
0 L

]
, ψ34(x3z) =

[
HCZiz

0

]
, Es =

[
e1
f2

]
.

System (2.5) is subject to the algebraic constraints

f1 = H1Lx4, (2.6)

e2 = HT
C2x3, (2.7)

where HCZ , H1L, HCL and HC2 are submatrices of the fundamental loop matrix. The interested reader is
referred to Avila-Becerril et al. (2016) for a detailed explanation about the structure of these matrices
with respect to different network topologies. In particular, it can be proved that, as a consequence of
A.1 and A.2, matrices HCZ and HC2 take the form

HT
CZ =

[
In2

... 0
]

, and HT
C2 =

[
0

... −In4

]
. (2.8)

2.2. Power converters model

For modelling the power converters, two general conditions are studied to include the phenomena
generated by different kinds of DERs. It is considered that some DERs produce a voltage output signal
while others provide a current output signal.

Associated with the DERs with a voltage output, there are n1 voltage-fed converters, each one
composed by a DC voltage source, a switching device and a second-order output filter. This set of
converters have a stored energy function W1 : Rn1 × Rn1 → R�0 given by

W1(x1, x2) = 1

2
xT

1 Lvx1 + 1

2
xT

2 Cvx2, (2.9)

where x1 ∈ Rn1 and x2 ∈ Rn1 are the filters inductor currents and the capacitor voltages, respectively,
while Lv = LT

v > 0 and Cv = CT
v > 0 are the n1 × n1 inductance and capacitance matrices. With

the stored energy function at hand, the dynamic behaviour of the n1 voltage-fed converters can be
represented in a compact form as

P12ẋ12 = [
J12 − R12

]
x12 +

[
Vu1
0

]
−

[
0
IL

]
, (2.10)
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PASSIVITY-BASED CONTROL FOR ISLANDED MICROGRIDS 1577

with x12 = [
xT

1 xT
2

]T ∈ R2n1 , R12 = diag
{
0, r−1

}
, r−1 = diag{r−1

i }, i = 1, . . . , n1 the filters capacitor
losses, P12 = diag{Lv, Cv} and

J12 =
[

0 −I
I 0

]
= −J

T
12 ∈ R

2n1×2n1 .

In this representation, the vector u1 = col{u1i} ∈ Rn1 is composed by the control input of each converter
and V = diag{Vi} ∈ Rn1×n1 is the matrix of constant voltage sources Vi > 0.

For the set of DERs with current output, there exist n4 current-fed power converters whose individual
structure is given by a capacitor parallel connected to a DC current source, a switching device and an
output inductor. For this set of devices, the stored energy function W2 : Rn4 × Rn4 → R�0 takes the
form

W2(x5, x6) = 1

2
xT

5 Lf x5 + 1

2
xT

6 Cf x6, (2.11)

with x5 ∈ Rn4 and x6 ∈ Rn4 the inductor currents and the capacitor voltages, respectively, and Lf =
LT

f > 0, Cf = CT
f > 0 the n4 × n4 inductance and capacitance matrices. Hence, defining P56 =

diag{Lf , Cf }, the dynamic behaviour of the n4 current-fed converters can be represented by

P56ẋ56 = [
J56(U2) − R56

]
x56 + ε, (2.12)

where x56 = [
xT

5 xT
6

]T ∈ R2n4 , R56 = diag{Rf , r−1
f }, the inductor and capacitor losses given by Rf =

diag{Rfi} and r−1
f = diag{r−1

fi }, i = 1, . . . , n4 and the matrices

J56(U2) =
[

0 U2−U2 0

]
= −J

T
56(U2) ∈ R

2n4×2n4 , ε =
[ −E

I0

]
,

with U2 = diag{u21, . . . , u2n4} and I0 = col{I0i} ∈ Rn4 the vector of constant current sources I0i > 0.
The vector E = col{Ei} ∈ Rn4 is composed by the port voltages of the network where the current-fed
converters are connected.

At this point, it is useful to recover the result reported in Cisneros et al. (2015) which states that under
an appropriate definition of constant skew-symmetric matrices Ji, i = 1, . . . , n4, the matrix J56(U2) can
be written as

J56(U2) = J1u21 + . . . + Jn4u2n4, (2.13)

leading to the possibility of obtaining the alternative representation of model (2.12) given by

P56ẋ56 = −R56x56 + G2(x56)u2 + ε, (2.14)

where u2 = col
{
u2i

}
and

G2(x56) :=
[
J1x56

... · · · ... Jn4x56

]
. (2.15)
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1578 S. AVILA-BECERRIL ET AL.

As will be clear below, the property above is fundamental in the development of the control scheme
considered in this paper since the vector control input u2 appears in an affine way in the alternative
model (2.14).

2.3. Complete MG model

The complete dynamical model of the MG can be obtained by interconnecting the input ports of the
electrical circuit with the output ports of the voltage-fed and current-fed converters. This is done by
identifying that the constraints given by

f1 = IL = H1Lx4, (2.16a)

e1 = x2, (2.16b)

e2 = E = HT
C2x3, (2.16c)

f2 = −x5 (2.16d)

must be satisfied. Moreover, since these equations naturally define power preserving interconnections,
(van der Schaft & Maschke, 2013), then it is possible to conclude that the resulting complete system
also exhibits a PCH structure.

The complete MG model considers the vector state

x = [
xT

1 xT
2 xT

3 xT
4 xT

5 xT
6

]T ∈ R
n

with dimension n = 2n1 + n2 + n3 + 3n4. Thus, the total stored energy function of the whole system is

WT(x) = xTPx, (2.17)

with P = diag{P12, P34, P56} = PT > 0, leading to the complete model given by

Pẋ = [
JT(U2) − RT

]
x + Vu1 + I0 − Ψ34(x3z), (2.18)

with RT = diag{0, r−1, R−1
3 , R4, Rf , r−1

f } = R�
T � 0 and the matrices

JT =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −I 0 0 0 0
I 0 0 −H1L 0 0
0 0 0 −HCL HC2 0
0 HT

1L HT
CL 0 0 0

0 0 −HT
C2 0 0 U2

0 0 0 0 −U2 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,V =

⎡
⎢⎢⎢⎢⎢⎢⎣

V
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

I0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
I0

⎤
⎥⎥⎥⎥⎥⎥⎦

, Ψ34(x3z) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

HCZψ−1
c (x3z)

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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If property (2.14) is considered, model (2.18) can be equivalently written as the input-affine non-linear
system

Pẋ = [
J0 − RT

]
x + GT(x56)u + I0 − Ψ34(x3z), (2.19)

where u = [
uT

1 uT
2

]T ∈ Rn1+n4 , V1 = col{V , 0, 0, 0} and

GT(x56) :=
⎡
⎣V1

... 0

0
... G2(x56)

⎤
⎦ , (2.20)

with G2(x56) already defined in (2.15).

Remark 2.1 It is interesting to point out that although the use of the developed model will be
specialized to the case of alternate current (AC) networks, it verbatim applies for the study of DC
operation. This degree of freedom can be used to extend the results presented in this paper. Current
research is carried out in this sense.

3. Passivity-based control design

In this section, the design of the proposed control law for the MG model (2.19) is introduced. However,
before presenting this scheme, it is important to recognize a useful structural property of the system that
is evidenced by the decomposition into subsystems introduced in Section 2. This property refers to the
fact that the fulfillment of a power demanded by the loads is guaranteed if the converters’ voltages and
currents, x12 and x56, reach appropriate (prescribed) values, leaving the variables related to the power
lines, x34, with the possibility of evolving in a free way (as long as they remain bounded). The last is
possible since, if the sources can provide a demanded amount of power, the power balance is achieved
with the variables x34 naturally tending to some (bounded) value that corresponds to this operating
condition. Hence, only for systems (2.10) and (2.12), it is necessary to include a control scheme, while
system (2.5) can freely evolve.

On the other hand, a second feature of the control problem that must be taken into account concerns
with the condition that, from a technical perspective, the control schemes for systems (2.10) and
(2.12) deal with a tracking control problem for the output variables of the power converters. Thus,
before developing the control law, a previous step that is necessary to cover is the identification of the
constraints that the reference operating conditions must satisfy. These constraints are imposed by the
system’s model so that the admissible reference trajectories must be solution of

P12ẋ�
12 = (J12 − R12)x

�
12 +

[
Vu�

1
0

]
−

[
0

H1Lx4

]
, (3.1a)

P56ẋ�
56 = −R56x�

56 + G�
2(x

�
56)u

�
2 +

[ −HT
C2x3
I0

]
, (3.1b)

where the line variables x34 are considered as externally known signals and u�
1, u�

2 are the control inputs
that generate the references x�

12 and x�
56, respectively.
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1580 S. AVILA-BECERRIL ET AL.

With the preliminaries stated above, to formulate the control problem for the power converters, it is
convenient to define the error variables x̃i = xi − x�

i , i = 12, 56, and the corresponding error dynamic
given by

P12
˙̃x12 = [

J12 − R12

]
x̃12 +

[
Vũ1

0

]
, (3.2a)

P56
˙̃x56 = [

J56(U2) − R56

]
x̃56 + G2(x

�
56)ũ2, (3.2b)

where the last equation is obtained by exploiting the alternative representation (2.14). Under these
conditions, the control problem is formulated as to design control inputs u1 and u2 such that

lim
t→∞ x̃12 = 0; lim

t→∞ x̃56 = 0.

The solution proposed in this paper to this problem is presented in the next proposition.

Proposition 3.1 Consider the MG model (2.19). Assume A.1 and A.2 are satisfied. Additionally,
consider that

A.3 currents x1, x5 and voltages x6 are available for measurement,

A.4 the converters parameters P12 and P56 are known,

A.5 the prescribed voltage x�
2 and current x�

5 are known bounded continuous functions with a
bounded second derivative,

A.6 the load port variables satisfy the passivity condition

xT
3zψ

−1
c (x3z) � 0.

Under these conditions, the control laws given by

u1 = −V−1Kp1x̃1 + u�
1; Kp1 = KT

p1 > 0 (3.3a)

u2 = −Kp2y2 + u�
2; Kp2 = KT

p2 > 0 (3.3b)

with y2 := GT
2 (x�

56)x̃56, and u�
1, u�

2 satisfying (3.1), achieve

lim
t→∞ x̃12 = 0; lim

t→∞ x̃56 = 0

guaranteeing internal stability.

Proof. The proof is based on cascade arguments; see Sepulchre et al. (2012). First, notice that the
system (3.2) in closed-loop with control (3.3) can be written as

[
P12

˙̃x12
P56

˙̃x56

]
=

[
J12 − R̄12 0

0 J56(U2) − R56

] [
x̃12
x̃56

]
−

[
0

G2(x
�
56)Kp2y2

]
, (3.4)
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PASSIVITY-BASED CONTROL FOR ISLANDED MICROGRIDS 1581

where R̄12 = diag{Kp1, r−1} = R̄T
12 > 0. By defining the auxiliary variable ζ = [

x̃T
12 x̃T

56

]T
, the closed-

loop system (3.4) takes the form

P̄ζ̇ = [
J̄(U2) − R̄

]
ζ −

[
0

G2(x
�
56)Kp2y2

]
, (3.5)

with P̄ = diag{P12, P56} = P̄� > 0, R̄ = diag{R̄12, R56} = R̄T > 0 and J̄(U2) = diag{J12, J56(U2)} =
−J̄T(U2).

On the other hand, under the port interconnections (2.16b) and (2.16d), the network dynamic (2.5)
is given by

P34ẋ34 = [
J34 − R34

]
x34 − ψ34(x3z) + A

[
x̃12 + x�

12
x̃56 + x�

56

]
, (3.6)

with

A :=
[

0 0 HC2 0
0 HT

1L 0 0

]
.

Thus, by defining = [
x�T

12 x�T
56

]
, the whole system exhibits the cascade structure

ζ̇ = g(ζ , ζ �), (3.7a)

ẋ34 = f (x34) + Γ (ζ , ζ �), (3.7b)

where Γ (ζ , ζ �) = A(ζ + ζ �) while g(ζ , ζ �) and f (x34) can be directly identified from (3.4) and (3.6),
respectively.

In the rest of the proof, it is shown that Γ (ζ , ζ �) is a non-vanishing but bounded perturbation when
ζ = 0, that subsystem (3.7a) is globally exponentially stable (GES) and that the subsystem (3.7b) is
input-to-state stable (ISS), permitting the application of well-known results of cascaded systems theory
to obtain the stated stability properties.

Concerning the analysis of (3.7a), consider the Lyapunov function

V1(ζ ) = 1

2
ζ TP̄ζ , (3.8)

with P̄ = P̄T > 0, such that

λmin(P̄)|ζ |2 � V1(ζ ) � λmax(P̄)|ζ |2.

Taking its time derivative of (3.8) along the trajectories of (3.7a) yields

V̇1(ζ ) = − ζ TR̄ζ − yT
2 Kp2y2

� −ζ T R̄ζ � −λmin(R̄)|ζ |2,

proving the GES property of the equilibrium ζ = 0.
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In order to formulate the ISS properties of subsystem (3.7b), consider first its dynamic behaviour
when Γ (ζ , ζ �) = 0, given by

ẋ34 = f (x34). (3.9)

Under this condition, take the positive definite function

W(x34) = 1

2
xT

34P34x34, (3.10)

whose time derivative along the trajectories of (3.9) is

Ẇ(x34) =
(

∂W(x34)

∂x34

)T

f (x34) = xT
34

([
J34 − R34

]
x34 − ψ34(x3z)

)
= −xT

34R34x34 − xT
3 HCZψ−1

c (x3z).

Taking into account Assumption A.6 and the definition of HCZ in (2.8), gives as a result, invoking La
Salle invariance principle, that the equilibrium x34 = 0 is GAS.

On the other hand, consider the presence of the perturbation term Γ (0, ζ �), i.e., when ζ = 0, which
due to A.5 is bounded. Under this condition, the time derivative of (3.10) along (3.7b) takes the form

Ẇ(x34) = −xT
34R34x34 − xT

3 HCZψ−1
c (x3z) + x�

34Γ (0, ζ �)

� −(1 − θ)λmin(R34)|x34|2 − θλmin(R34)|x34|2 + |x34||Γ (0, ζ �)|,

with 0 < θ < 1. Thus,

Ẇ(x34) � −(1 − θ)λmin(R34)|x34|2,

provided

|x34| � |Γ (0, ζ �)|
θλmin(R34)

.

Hence, it is concluded that the system (3.7b) is ISS, so that

|x34(t)| � β(|x34(t0)|, t − t0) + γ

(
sup
τ�t0

|Γ (0, ζ �)|
)

, ∀t � t0,

with β a KL function and γ (r) =
√

λmax(P34)
λmin(P34)

r
θλmin(R34)

.
The proof is finished exploiting argument of cascaded systems theory (for example, Sepulchre et al.,

2012, Proposition 4.1) noticing that the GES system (3.7a) is interconnected with the ISS system (3.7b)
via a term that satisfies |Γ (ζ , ζ �)| � |A||ζ | + γ2 for a positive constant γ2 and leading to the conclusion
that the equilibrium point (x34, ζ ) = (x�

34, 0) is GAS.
�

The following remarks about the presented result are in order.
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Remark 3.1 It is important to point out that the bounded behaviour of the whole closed-loop system is
guaranteed as long as the variables x�

2 and x�
5 are also bounded. Moreover, as the output voltage of the

voltage-fed converters tends to the former, while the output current of the current-fed converters tends
to the latter, then the generation of grid-forming and grid-following nodes, respectively, is assured by a
proper selection of x�

2 and x�
5.

Remark 3.2 It is also interesting to note that the selection of x�
2 and x�

5 imposes the network operation
condition. In the next section, the particular case of AC networks is approached. However, there exists
the possibility of considering the DC operation case under a proper definition of the reference variables.
Current research is carried out considering this context.

4. Reference variable design

The last step in the controller design involves two computations, namely the determination of the
reference variables x�

12, x�
56 for given x�

2, x�
5, and the explicit selection of these last variables to achieve

voltage regulation and power network balance.
In order to perform the first computations, notice that, from (3.1a), an admissible behaviour x�

12 must
satisfy the equations

Lvẋ�
1 = −x�

2 + Vu�
1, (4.1a)

Cvẋ�
2 = x�

1 − H1Lx4. (4.1b)

Therefore, if an output voltage x�
2 for the voltage-fed converters is imposed, the required input to generate

it is

u�
1 = V−1 [

Lvẋ�
1 + x�

2

]
, (4.2)

with the corresponding value for x�
1 is obtained as

x�
1 = −Cvẋ�

2 − H1Lx4.

Regarding the structure of the last expression, it is worth pointing out its fundamental role in the
solution proposed in this paper. Notice that the admissible value of the current x�

1 is naturally adjusted in
terms of the network operation conditions expressed by the total current H1Lx4. In particular, any change
in power demanded by the loads is translated into a variation of x4 and, consequently, into an adaptation
of the reference value x�

1. This feature is exploited below to solve the power balance objective.
On the other hand, from (3.1b), any admissible behaviour x�

56 must be solution of

Lf ẋ�
5 = − Rf x�

5 + diag{x�
6i}u�

2 − HT
C2x3, (4.3a)

Cf ẋ�
6 = −r−1

f x�
6 − diag{x�

5i}u�
2 + I0. (4.3b)
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Thus, for a prescribed output current x�
5 for the current-fed converters, the corresponding value for x�

6 is
obtained as solution of (4.3b) while the required input for generating x�

56 takes the form

u�
2 =

[
G�

2 (x�
56)G2(x

�
56)

]−1
G�

2 (x�
56)

(
P56ẋ�

56 + R56x�
56 +

[
HT

C2x3−I0

])
. (4.4)

The implementation of (4.4) is possible due to the fact that G2(x
�
56) is column full rank for all x�

56 �= 0.
Once the procedure to determine the values of x�

12 and x�
56 has been established, the second

computation, required to complete the last step of the controller design, concerns to the explicit
definition of x�

2 and x�
5. In this sense, the former is devoted to guarantee the generation of grid-forming

nodes while the latter is dedicated to achieve a prescribed power generation, relating the operation of
the current-fed converters with grid-following nodes.

Concerning the voltage regulation objective, it is immediate to recognize that the output voltage of
the i-th voltage-fed converter must exhibit the form

x�
2i = √

2Vrms
i cos(ωt + θVi), (4.5)

where Vrms
i is the root-mean square (RMS) desired voltage magnitude while ω and θVi are its angular

frequency and phase, respectively. At this point, it must be noticed that if the angular frequency ω is
the same for all the grid-forming nodes, then synchronization of the network is achieved. Furthermore,
although the phase angle θVi can be viewed as an additional degree of freedom, for generation of voltage
reference nodes, the usual assigned value is zero.

Regarding the power balance objective, the premise to state the proposed solution is that the power
demanded by the loads must be satisfied in conjunction with the grid-following and the grid-forming
nodes. To do this, it is considered that the sources associated with grid-following nodes have a limited
power generation capacity. Thus, the objective is to force these nodes to provide their maximum
available power and complement the demand with power provided by the grid-forming nodes. In this
sense, it is assumed that the voltage-fed converters can always deliver the current x�

1 imposed by a
specific value of x4 leading to the fact that, without explicitly knowing the power demanded by the
loads, the desired power network balance is achieved since the grid-forming nodes are always capable
of contributing with the required power.

Under the scenario described above, consider that the i-th grid-following converter can deliver only a
fixed amount of active and reactive powers denoted by P�

gi and Q�
gi, respectively. In addition, assume that

the point of common coupling between this converter and the grid has a well-defined voltage profile,
provided by the grid-forming nodes, of the form

Ei = √
2Erms

i cos(ωt + θEi). (4.6)

This condition, in its turn, implies that the admissible output current x�
5i of the current-fed converters

must be exhibit also a sinusoidal structure which, using well-known arguments from AC circuits, can be
written as

x�
5i = 1√

2Ei
rms

[
P�

gi cos(ωt + θEi) + Q�
gi sin(ωt + θEi)

]
, (4.7)
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Table 1 Test system parameters

Parameter Value Parameter Value Parameter Value

Ci 150 μF Cj 200 μF Ck 200 μF
Ck 60 μF Rsi 60 mΩ Lsi 1.25 mH
Rij 10 mΩ Lij 1.25 mH Rjk 50 mΩ

Ljk 1.25 mH Rjl 10 mΩ Ljl 100 μH
Rkm 10 mΩ Lkm 2.5 mH Rln 1 mΩ
Lln 2.5 mH Rj 6Ω Rj = Rk 5 Ω

f 60 Hz Vrms
220√

3
V VDC 600 V

where the relationship between the parallel and quadrature components of the voltage profile and the
active and reactive powers has been used.

Implementation of (4.7) can be carried out noting that the parallel component of the voltage profile
is given by

e‖ = 1√
2Erms

i

Ei = cos(ωt + θEi). (4.8)

Hence, the quadrature component e⊥ can be reconstructed by the use of a classical quadrature generator
of the form

[
ż1
ż2

]
=

( −ks ω

−ω 0

) [
z1
z2

]
+

[
ks
0

]
e‖ (4.9)

due to the fact that, if ks > 0, the solutions z1 and z2 of this dynamical system asymptotically converge
to e‖ and e⊥, respectively, with a rate of convergence determined by ks. Thus, the implementable version
of (4.7) is given by

x�
5i = 1√

2Ei
rms

(
P�

giz1 + Q�
giz2

)
. (4.10)

5. Test system and simulation results

In this section, the usefulness of the proposed controller is evaluated via a numerical simulation. The
considered MG, shown in Fig. 1, is composed by one voltage-fed converter, two current-fed converters,
three transmission lines and five loads. From the perspective of model (2.18), the corresponding matrices
are given by

H�
1L =

⎡
⎣1

0
0

⎤
⎦ , HCL =

⎡
⎣−1 −1 −1

0 1 0
0 0 1

⎤
⎦ , HC2 =

⎡
⎣ 0 0

−1 0
0 −1

⎤
⎦ and HCZ =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ , (5.1)

while n1 = 1 and n4 = 2. The considered parameters for the network are listed in Table 1.
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Fig. 1. Electrical configuration of a single-phase MG for isolating grid applications.

Fig. 2. Active power available in the renewable energy resources.

With the aim to carry the evaluation out as close as possible to a realistic scenario, several practical
features were introduced, namely

• instead of consider the averaged model, the simulation was implemented in the SimPowerSystems
library of MATLAB/Simulink using switching models for the converters, operating at a 10 kHz
switching frequency;

• a battery energy storage replaced the voltage source of the voltage-fed converter;
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Fig. 3. Voltage RMS values in all nodes of the network.

Fig. 4. Active and reactive power outputs in the renewable energy resources: (a) WT generation system and (b) PV system.

• the current sources of the two current-fed converters were implemented using a 600-V base PV unit
and a 10-kW power base wind turbine (WT). Concerning their power capacity, Fig. 2 shows the
time-varying power available at the PV and WT generation systems.

• In addition to passive loads, given in this case by RC arrays, constant power loads (CPLs) were
parallel connected at the j and l buses considering that they consume, under nominal voltage
operative conditions, 8 kW, 5 kVAr and 6 kW, 4 kVAr, respectively.

Under the conditions described above, the purpose of the simulation was to validate that for the
power demand imposed by the mixed loads, the grid-forming node was able to guarantee voltage
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Fig. 5. Voltage performances at the DC links and grid frequency behaviour: (a) DC voltage output and (b) AC frequency
performance.

regulation and the grid-following nodes assured the injection of the maximum amount of power available
at their corresponding sources.

5.1. Simulation results

Figure 3 presents the RMS values of the voltage profiles in all the nodes of the network, where it can be
noticed that they oscillate between 0.9 p.u. and 1.1 p.u., achieving voltage regulation from a practical
perspective and also illustrating the stability properties of the control system. Moreover, this behaviour
holds the constraint imposed by regulatory entities that allow a voltage regulation limit of ±10 % for
low-voltage distribution systems.

Figure 4 shows the active and reactive power performance of the PV and WT generation systems.
As predicted by the theory and after a short transient behaviour, these systems are controlled so that all
active power available on the DC side of the converters is transferred to the AC side. In addition, it is
also evidenced that power converters can be effectively used to provide reactive power support to the
AC grid. In particular, for the case of the WT system a constant demand of 1.5kVAr is satisfied as can
be seen in Fig. 4(a), while the PV unit provides to the AC grid 2kVAr as shown in Fig. 4(b).

It is important to mention that the transient behaviour exhibited during 0.0 s to 0.1 s corresponds to
the simulation’s initialization and does not compromise the system’s stability. Another important feature
appears when active and reactive power references are reached since the maximum tracking errors are
less than 2%, which confirms the possibility of operating the network in islanded mode with minimal
errors despite the presence of unknown CPLs.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
ci/article/37/4/1548/5920453 by U

niversidad Tecnológica de Pereira user on 16 D
ecem

ber 2020



PASSIVITY-BASED CONTROL FOR ISLANDED MICROGRIDS 1589

Finally, Fig. 5 depicts the voltage profiles at the DC sides of the converters as well as the frequency
behaviour of the AC side, showing that the synchronization objective is also achieved, guaranteeing
internal stability. The performance is also prominent from the application viewpoint since both voltage
profiles fluctuate about their nominal values with tracking errors less than 1.775% and 1.536% for the
PV and WT systems, respectively. Notice that the higher values occur during the transient state from
0.0 s to 0.1 s. On the other hand, Fig. 5(b) shows the frequency behaviour of the AC grid, which
is measured at the i-node. This frequency oscillates around its nominal value with peaks less than
3.75 × 10−2%, which clearly confirms that the grid-forming node allows controlling the AC voltage
profile of the whole MG.

6. Conclusions

In this paper, a solution to the voltage regulation and power balance problems for MGs operating in
islanded mode was presented. The considered model for the network explicitly includes models of
both the power converters associated with the DERs and the network itself, and the stability properties
of the whole closed-loop system were formally proved. The main feature of the controller design
methodology is given by the decomposition of the system into two kinds of subsystems, those that
require a control scheme and other whose variables can evolve in a free way. Under this perspective,
the power balance objective is achieved without explicit knowledge of the power demanded by the
loads. From the technical viewpoint, the proposed control laws were obtained using PBC arguments,
guaranteeing the generation of grid-forming and grid-following nodes, while the stability analysis was
carried out complementing the PBC design with cascaded systems theory arguments. The usefulness of
the contribution was validated via a simulation that considered several practical conditions.
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